These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. Author: Jeong SW, Corapcioglu MY. Journal: J Hazard Mater; 2005 Nov 11; 126(1-3):8-13. PubMed ID: 16054295. Abstract: Governing mechanisms of dense non-aqueous phase liquid (DNAPL) removal during surfactant and surfactant-foam (SF) flooding were studied by porous-patterned glass model experiments. Physical forces, viscous forces and capillary forces, acting on trichloroethylene (TCE) blobs were quantified to understand DNAPL removal mechanisms during the floods, simultaneously visualizing the removal mechanisms. The viscous force of the remedial fluid was intimately related to TCE removal from the porous medium. The remedial fluid with a high viscous force displaced more TCE blobs. Displacement of residual TCE by the remedial fluid began as viscous pressure of flooding was closed to the capillary pressure of the porous medium. In the region of viscous pressure less than the capillary pressure, residual TCE was either retained or solubilized, not displaced, implying that TCE solubilization was the dominant TCE removal process. Glass porous model visualization validated a dominance of the capillary forces during a surfactant flush and a dominance of the viscous forces of the displacing fluid during a SF flood.[Abstract] [Full Text] [Related] [New Search]