These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic treatment with a serotonin(2) receptor (5-HT(2)R) agonist modulates the behavioral and cellular response to (+)-3,4-methylenedioxymethamphetamine [(+)-MDMA]. Author: Ross JD, Herin DV, Frankel PS, Thomas ML, Cunningham KA. Journal: Drug Alcohol Depend; 2006 Feb 01; 81(2):117-27. PubMed ID: 16054778. Abstract: 3,4-Methylenedioxymethamphetamine [MDMA; ecstasy] evokes a multifaceted subjective experience in human users which includes stimulation, feelings of well-being, mood elevation, empathy towards others as well as distortions in time, sensation and perception. Aspects of this unique psychopharmacology of MDMA are thought to be related to its potent actions to release serotonin (5-HT) and indirectly stimulate the 5-HT(2A) receptor (5-HT(2A)R). In the present studies, we examined the interrelationship between down-regulation of 5-HT(2A)R expression and the behaviorally stimulatory effects generated by acute administration of (+)-MDMA, the most potent enantiomer of (+/-)-MDMA. Male Sprague-Dawley rats were chronically treated with the preferential 5-HT(2A)R agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) which has been shown to down-regulate expression of the 5-HT(2A)R, but not the closely related 5-HT(2C)R. While chronic DOI treatment did not alter the functional sensitivity of either the 5-HT(2A)R or 5-HT(2C)R, this regimen enhanced (+)-MDMA-evoked hyperactivity. Subsequent analysis of c-Fos and 5-HT(2A)R immunoreactivity in brain sections demonstrated that DOI treatment decreased the number of (+)-MDMA-induced c-Fos immunopositive nuclei and 5-HT(2A)R immunostaining in select cortical and striatal areas. These results indicate that chronic DOI exposure results in an enhanced behavioral response to (+)-MDMA and in a pattern of neuronal activation which resembles that seen in psychostimulant sensitization. These data also suggest that expression of the 5-HT(2A)R in the NAc and PFC may play a role in the sensitivity to the locomotor-stimulating effects of (+)-MDMA and in the processes of neural regulation upon repeated psychostimulant administration.[Abstract] [Full Text] [Related] [New Search]