These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mycobacterium leprae induces NF-kappaB-dependent transcription repression in human Schwann cells.
    Author: Pereira RM, Calegari-Silva TC, Hernandez MO, Saliba AM, Redner P, Pessolani MC, Sarno EN, Sampaio EP, Lopes UG.
    Journal: Biochem Biophys Res Commun; 2005 Sep 16; 335(1):20-6. PubMed ID: 16055086.
    Abstract:
    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-kappaB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-kappaB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-kappaB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IkappaB-alpha degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-kappaB-driven transcription induced by TNF-alpha. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-kappaB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-kappaB activation in Schwann cells and thalidomide is able to modulate this activation.
    [Abstract] [Full Text] [Related] [New Search]