These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermodynamic elucidation of solute-induced lipid interdigitation phase: lipid interactions with hydrophobic versus amphipathic species.
    Author: Roth LG, Chen CH.
    Journal: Arch Biochem Biophys; 1992 Jul; 296(1):207-13. PubMed ID: 1605632.
    Abstract:
    Comparative thermodynamic studies on the interactions of aqueous dispersions of dipalmitoyl phosphatidylcholine (DPPC) bilayer vesicles with hydrophobic and amphipathic species were conducted to elucidate the nature of the solute-induced interdigitated lipid phase. Cyclohexanol, a strong hydrophobic species, lowers the temperature (tm) of the lipid main phase transition from the gel to the liquid-crystalline phase. Unlike ethanol (an amphipathic species), as reported previously, cyclohexanol does not exert a biphasic effect on tm (lowering tm at lower concentrations and raising tm at higher concentrations). At cyclohexanol greater than or equal to 15.4 mg/ml or 0.154 M, the thermogram of DPPC vesicles exhibits a small transition adjacent to the main phase transition but at a lower temperature. In contrast, ethanol does not promote such a small transition. Furthermore, the enthalpy (delta H) of the transition is increased in the presence of cyclohexanol. The sign of the enthalpy change (delta H-delta Ho) is positive and that of the free energy change (delta G-delta Go) is negative, a characteristic of solute-solute hydrophobic interaction. In contrast, DPPC bilayer vesicles exhibit both (delta H-delta Ho) and (delta G-delta Go) greater than 0 in the presence of ethanol in a concentration range where lipid vesicles exist in an interdigitated phase. To support the above distinct thermodynamic observations, fluorescence steady-state polarization (P) measurements were also performed. At the temperature below tm, the value of P decreases as cyclohexanol concentration increases, while a biphasic effect on P was found in the presence of ethanol. These findings support the postulation that the solute-induced interdigitated lipid phase requires the solute molecule to be amphipathic in nature.
    [Abstract] [Full Text] [Related] [New Search]