These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stabilities of the aqueous complexes Cm(CO3)33- and Am(CO3)33- in the temperature range 10-70 degrees C.
    Author: Vercouter T, Vitorge P, Amekraz B, Giffaut E, Hubert S, Moulin C.
    Journal: Inorg Chem; 2005 Aug 08; 44(16):5833-43. PubMed ID: 16060637.
    Abstract:
    The carbonate complexation of curium(III) in aqueous solutions with high ionic strength was investigated below solubility limits in the 10-70 degrees C temperature range using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The equilibrium constant, K(3), for the Cm(CO(3))(2-) + CO(3)(2-) right harpoon over left harpoon Cm(CO(3))(3)(3-) reaction was determined (log K(3) = 2.01 +/- 0.05 at 25 degrees C, I = 3 M (NaClO(4))) and compared to scattered previously published values. The log K(3) value for Cm(III) was found to increase linearly with 1/T, reflecting a negligible temperature influence on the corresponding molar enthalpy change, Delta(r)H(3) = 12.2 +/- 4.4 kJ mol(-1), and molar entropy change, Delta(r)S(3) = 79 +/- 16 J mol(-1) K(-1). These values were extrapolated to I = 0 with the SIT formula (Delta(r)H(3) degrees = 9.4 +/- 4.8 kJ mol(-1), Delta(r)S(3) degrees = 48 +/- 23 J mol(-1) K(-1), log K(3) degrees = 0.88 +/- 0.05 at 25 degrees C). Virtually the same values were obtained from the solubility data for the analogous Am(III) complexes, which were reinterpreted considering the transformation of the solubility-controlling solid. The reaction studied was found to be driven by the entropy. This was interpreted as a result of hydration changes. As expected, excess energy changes of the reaction showed that the ionic strength had a greater influence on Delta(r)S(3) than it did on Delta(r)H(3).
    [Abstract] [Full Text] [Related] [New Search]