These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of the functional expression of hexose transporter GLUT-1 by glucose in murine fibroblasts: role of lysosomal degradation. Author: Ortiz PA, Honkanen RA, Klingman DE, Haspel HC. Journal: Biochemistry; 1992 Jun 16; 31(23):5386-93. PubMed ID: 1606164. Abstract: The nature of the membrane compartments involved in the regulation by glucose of hexose transport is not well defined. The effect of inhibitors of lysosomal protein degradation on hexose transport (i.e., uptake of [3H]-2-deoxy-D-glucose) and hexose transporter protein GLUT-1 (i.e., immunoblotting with antipeptide serum) in glucose-fed and -deprived cultured murine fibroblasts (3T3-C2 cells) was studied. The acidotropic amines chloroquine (20 microM) and ammonium chloride (10 mM) cause accumulation (both approximately 4-fold) of GLUT-1 protein and a small increase (both approximately 25%) in hexose transport in glucose-fed fibroblasts (24 h). The endopeptidase inhibitor, leupeptin (100 microM) causes accumulation (approximately 4-fold) of GLUT-1 protein in glucose-fed fibroblasts (24 h) without changing hexose transport (less than or equal to 5%). These agents do not greatly alter the electrophoretic mobility of GLUT-1. Neither chloroquine nor leupeptin augment the glucose deprivation (24 h) induced increases in hexose transport (approximately 4-fold) and GLUT-1 content (approximately 7-fold). In contrast, chloroquine or leupeptin diminish the reversal by glucose refeeding of the glucose deprivation induced accumulation of GLUT-1 protein but fail to alter the return of hexose transport to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]