These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells.
    Author: Varshney R, Dwarakanath B, Jain V.
    Journal: Int J Radiat Biol; 2005 May; 81(5):397-408. PubMed ID: 16076755.
    Abstract:
    The aim was to exploit simultaneous inhibition of glycolytic and pentose phosphate pathways of energy production for radiosensitization using 2-deoxy-D-glucose (2-DG) and 6-aminonicotinamide (6-AN) in transformed mammalian cells. Two human tumour cell lines (cerebral glioma, BMG-1 and squamous carcinoma cells 4197) were investigated. 2-DG and/or 6-AN added at the time of irradiation were present for 4 h after radiation. Radiation-induced cell death (macrocolony assay), cytogenetic damage (micronuclei formation), cell cycle delay (bromodeoxyuridne (BrdU) pulse chase), apoptosis (externalization of phosphotidylserine (PS) by annexin V), chromatin-bound proliferation cell nuclear antigen (PCNA) and cellular glutathione (GSH) levels were investigated as parameters of radiation response. The presence of 2-DG (5 mM) during and for 4 h after irradiation increased the radiation-induced micronuclei formation and cell death, and caused a time-dependent decrease in GSH levels in BMG-1 cells while no significant effects could be observed in 4197 cells. 6-AN (5 microM) enhanced the radiosensitivity of both cell lines and reduced the GSH content by nearly 50% in gamma-irradiated 4197 cells. Combining 2-DG and 6-AN caused a profound decrease in the GSH content and enhanced the radiation damage in both the cell lines by increasing mitotic and apoptotic cell death. Further, the combination (2-DG + 6-AN) enhanced the radiation-induced G2 block, besides arresting cells in S phase and inhibited the recruitment of PCNA. The combination of 2-DG and 6-AN enhances radiation damage by modifying damage response pathways and has the potential for improving radiotherapy of cancer.
    [Abstract] [Full Text] [Related] [New Search]