These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Caspase-dependent and -independent cell death pathways after DNA damage (Review). Author: Kim R, Emi M, Tanabe K. Journal: Oncol Rep; 2005 Sep; 14(3):595-9. PubMed ID: 16077961. Abstract: Apoptosis is known to be an important phenomenon in exerting antitumor response to cancer therapy, which is regulated by Bcl-2 family proteins through mitochondrial permeability transition (MPT). Insertion by the activated Bax/Bak in response to DNA damage induces mitochondrial membrane permeabilization (MMP) via an anion channel, VDAC in mitochondrial outer membrane that plays a crucial role in releasing small molecules such as cytochrome c, Smac/DIABLO, Omi/HtrA2, AIF, and endonuclease G leading to cell death. The released small molecules are involved in caspase-dependent and -independent cell death pathway that is inhibited by Bcl-2/xL. Despite the fact that the pancaspase inhibitor, zVAD-fmk inhibited the caspase cascade, cell death mediated by caspase-independent pathway was not blocked. Similarly, although etoposide induced-apoptosis was inhibited in Bax(-/-)/Bak(-/-)mouse embryonic fibroblasts, autophagy was not inhibited, which was regulated by Bcl-xL. It appears that the cross-talk between caspase-dependent and -independent apoptotic cell death including autophagic cell death that was mediated by MPT affects overall tumor response to anticancer treatment. In this review, to assist a comprehensive understanding of MPT-mediated cell death pathway for exploring appropriate targets in cancer therapy, role of the caspase-dependent and -independent cell death pathway in the interaction of these pathways is discussed.[Abstract] [Full Text] [Related] [New Search]