These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin.
    Author: Gil ES, Spontak RJ, Hudson SM.
    Journal: Macromol Biosci; 2005 Aug 12; 5(8):702-9. PubMed ID: 16080165.
    Abstract:
    Novel protein-based hydrogels have been prepared by blending gelatin (G) with amorphous Bombyx mori silk fibroin (SF) and subsequently promoting the formation of beta-sheet crystals in SF upon exposure to methanol or methanol/water solutions. Differential scanning calorimetry of the resultant hydrogels confirms the presence and thermoreversibility of the G helix-coil transition between ambient and body temperature at high G concentrations. At low G concentrations, this transition is shifted to higher temperatures and becomes progressively less pronounced. Complementary dynamic rheological measurements reveal solid-liquid cross-over at the G helix-coil transition temperature typically between 30 and 36 degrees C in blends prior to the formation of beta-sheet crystals. Introducing the beta-sheet conformation in SF stabilizes the hydrogel network and extends the solid-like behavior of the hydrogels to elevated temperatures beyond body temperature with as little as 10 wt.-% SF. The temperature-dependent elastic modulus across the G helix-coil transition is reversible, indicating that the conformational change in G can be used in stabilized G/SF hydrogels to induce thermally triggered encapsulant release.
    [Abstract] [Full Text] [Related] [New Search]