These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer.
    Author: Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud JL, Boutry M.
    Journal: Proc Natl Acad Sci U S A; 2005 Aug 16; 102(33):11675-80. PubMed ID: 16081536.
    Abstract:
    Plant plasma membrane H+-ATPases (PMAs) can be activated by phosphorylation of their penultimate residue (a Thr) and the subsequent binding of regulatory 14-3-3 proteins. Although 14-3-3 proteins usually exist as dimers and can bind two targets, the in vivo effects of their binding on the quaternary structure of H+-ATPases have never been examined. To address this question, we used a Nicotiana tabacum cell line expressing the Nicotiana plumbaginifolia PMA2 isoform with a 6-His tag. The purified PMA2 was mainly nonphosphorylated and 14-3-3-free, and it was shown by blue native gel electrophoresis and chemical cross-linking to exist as a dimer. Fusicoccin treatment of the cells resulted in a dramatic increase in Thr phosphorylation, 14-3-3 binding, and in vivo and in vitro ATPase activity, as well as in the conversion of the dimer into a larger, possibly hexameric, complex. PMA2 phosphorylation and 14-3-3 binding were observed also when cells in stationary growth phase were metabolically activated by transfer to fresh medium. When expressed in yeast, PMA2 was also phosphorylated and formed a complex with 14-3-3 proteins without requiring fusicoccin; no complex was observed when phosphorylation was prevented by mutagenesis. Single-particle analysis by cryoelectron microscopy showed that the PMA2-14-3-3 complex is a wheel-like structure with a 6-fold symmetry, suggesting that the activated complex consists of six H+-ATPase molecules and six 14-3-3 molecules.
    [Abstract] [Full Text] [Related] [New Search]