These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: possible Ca(2+)-channel inhibition.
    Author: Stauderman KA, Gandhi VC, Jones DJ.
    Journal: Life Sci; 1992; 50(26):2125-38. PubMed ID: 1608295.
    Abstract:
    Fluoxetine, a selective 5-HT uptake inhibitor, inhibited 15 mM K(+)-induced [3H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations greater than 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K+ used to depolarize the synaptosomes and the concentration of external Ca2+. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [3H]5-HT release induced by the Ca(2+)-ionophore A 23187 or Ca(2+)-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K(+)-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca2+ channels and Ca2+ entry. Whereas fluoxetine and paroxetine inhibited binding of [3H]nitrendipine to the dihydropyridine-sensitive L-type Ca2+ channel, the less selective uptake inhibitors did not alter binding. The dihydropyridine antagonist nimodipine partially blocked fluoxetine-induced inhibition of release. Moreover enhanced K(+)-stimulated release due to the dihydropyridine agonist Bay K 8644 was reversed by fluoxetine. Fluoxetine also inhibited the K(+)-induced increase in intracellular free Ca2+ in fura-2 loaded synaptosomes. These data are consistent with the suggestion that fluoxetine inhibits K(+)-induced [3H]5-HT release by antagonizing voltage-dependent Ca2+ entry into nerve terminals.
    [Abstract] [Full Text] [Related] [New Search]