These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and MEK/ERK1/2 activation.
    Author: El-Assal ON, Besner GE.
    Journal: Gastroenterology; 2005 Aug; 129(2):609-25. PubMed ID: 16083716.
    Abstract:
    BACKGROUND & AIMS: Early recovery of intestinal function after injury occurs by restitution, a complex process with a poorly understood molecular basis. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a potent chemotactic factor that is induced during ischemia/reperfusion in vivo and intestinal wounding in vitro. The role of HB-EGF in intestinal restitution and the underlying intracellular signaling pathways involved were investigated. METHODS: Adult rats were subjected to intestinal ischemia, with histologic and biochemical damage assessed during the first 3 hours of reperfusion. The effect of recombinant HB-EGF (rHB-EGF) on structural and functional recovery of the intestine by restitution was evaluated in vivo. Scrape wounding of intestinal epithelial cell monolayers was used to elucidate the mechanisms of intrinsic and rHB-EGF-induced restitution. RESULTS: Early structural recovery occurred within 3 hours of reperfusion and was attributed to restitution rather than proliferation. HB-EGF treatment significantly improved structural recovery and accelerated functional recovery of the gut barrier. In vivo restitution was preceded by activation of Akt and extracellular signal-regulated kinase (ERK) 1/2, which were accelerated and enhanced by HB-EGF treatment. Blocking of ErbB-1, phosphatidylinositol 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase/ERK kinase (MEK)/ERK activity resulted in significant reduction in intrinsic and HB-EGF-induced restitution in vitro. Endogenous HB-EGF was shown to play an essential role in wound-induced ErbB-1 and ERK1/2 activation and in intrinsic restitution. CONCLUSIONS: Endogenous HB-EGF, ErbB-1, PI3K/Akt, and MEK/ERK are involved in intrinsic restitution. rHB-EGF enhances restitution in vivo and in vitro in a PI3K/Akt- and MEK/ERK1/2-dependent fashion.
    [Abstract] [Full Text] [Related] [New Search]