These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Equilibrative nucleoside transporter 2 is expressed in human umbilical vein endothelium, but is not involved in the inhibition of adenosine transport induced by hyperglycaemia.
    Author: Aguayo C, Casado J, González M, Pearson JD, Martín RS, Casanello P, Pastor-Anglada M, Sobrevia L.
    Journal: Placenta; 2005; 26(8-9):641-53. PubMed ID: 16085043.
    Abstract:
    Human equilibrative, Na(+)-independent nucleoside transport is mediated by membrane proteins sensitive (system es, hENT1) or insensitive (system ei, hENT2) to nitrobenzylthioinosine (NBMPR). Gestational diabetes and elevated extracellular concentrations of D-glucose reduce adenosine transport in human umbilical vein endothelium (HUVEC). We studied hENT2 and hENT1 expression in HUVEC, and the effect of D-glucose on their activity and expression in HUVEC preincubated with 25 mM D-glucose (24 h). hENT2 and hENT1 mRNA were quantified by real-time reverse transcription polymerase chain reaction, and their proteins were detected by Western blotting. hENT2 and hENT1 proteins are co-expressed in HUVEC and are located at the plasma membrane, however, hENT2 was mainly cytoplasmatic and perinuclear in location. D-Glucose reduced hENT1 and hENT2 mRNA expression, but only hENT1 protein abundance at the plasma membrane. Adenosine transport was inhibited by D-glucose and NMBPR (1 microM) in intact cells and membrane vesicles. Hypoxanthine inhibited adenosine transport in the absence or in the presence of 1 microM NBMPR. D-Glucose reduced NBMPR maximal binding in intact cells, membrane vesicles, and plasma membrane fractions. In conclusion, the present study demonstrates that hENT2 and hENT1 are co-expressed in HUVEC, and even when adenosine transport is also mediated by hENT2, the hENT2-mediated transport activity is not involved in the d-glucose-induced down-regulation of total adenosine transport.
    [Abstract] [Full Text] [Related] [New Search]