These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lattice Boltzmann model for axisymmetric multiphase flows. Author: Premnath KN, Abraham J. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056706. PubMed ID: 16089690. Abstract: A lattice Boltzmann model is presented for axisymmetric multiphase flows. Source terms are added to a two-dimensional standard lattice Boltzmann equation for multiphase flows such that the emergent dynamics can be transformed into the axisymmetric cylindrical coordinate system. The source terms are temporally and spatially dependent and represent the axisymmetric contribution of the order parameter of fluid phases and inertial, viscous, and surface tension forces. A model which is effectively explicit and second order is obtained. This is achieved by taking into account the discrete lattice effects in the Chapman-Enskog multiscale analysis, so that the macroscopic axisymmetric mass and momentum equations for multiphase flows are recovered self-consistently. The model is extended to incorporate reduced compressibility effects. Axisymmetric equilibrium drop formation and oscillations, breakup and formation of satellite droplets from viscous liquid cylindrical jets through Rayleigh capillary instability, and drop collisions are presented. Comparisons of the computed results with available data show satisfactory agreement.[Abstract] [Full Text] [Related] [New Search]