These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels. Author: Nedea SV, Frijns AJ, van Steenhoven AA, Markvoort AJ, Hilbers PA. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016705. PubMed ID: 16090132. Abstract: We combine molecular dynamics (MD) and Monte Carlo (MC) simulations to study the properties of gas molecules confined between two hard walls of a microchannel or nanochannel. The coupling between MD and MC simulations is introduced by performing MD near the boundaries for accuracy and MC in the bulk because of the low computational cost. We characterize the influence of different densities and molecule sizes on the equilibrium properties of the gas in the microchannel. The effect of the particle size on the simulation results is very small in the case of a dilute gas and increases with the density. The hybrid MD-MC simulation method is validated by comparing the results for density and temperature profiles with those of pure MD and pure MC simulations. These results compare well for pure MD and pure MC, as well as hybrid MD-MC, both in the bulk and near the boundaries, when hard-sphere interactions are used. When Lennard-Jones potentials are used to accurately model the interactions between the gas and wall molecules instead, the results of pure MD simulations differ significantly from the pure MC simulations near the boundaries, but the results of the hybrid method compare well with the pure MD results near the wall, and with the pure MC and pure MD results in the middle of the channel. The hybrid method also very accurately simulates the interface between the MD and MC simulation domains. Comparisons between MD, MC, and hybrid MD-MC computational costs are outlined. The speedup when using 50% of the domain for MD simulations and 50% for MC simulations is very small compared to pure MD simulations times, but this speedup increases drastically for more realistic situations where the region near the wall is small compared to the bulk region.[Abstract] [Full Text] [Related] [New Search]