These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Directional surface plasmon-coupled emission: application for an immunoassay in whole blood.
    Author: Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I.
    Journal: Anal Biochem; 2005 Sep 15; 344(2):161-7. PubMed ID: 16091280.
    Abstract:
    We present a new approach for performing fluorescence immunoassay in whole blood using fluorescently labeled anti-rabbit immunoglobulin G (IgG) on a silver surface. This approach, which is based on surface plasmon-coupled emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bioaffinity surface. This article describes the effect of an optically dense sample matrix, namely human whole blood and serum, on the intensity of the SPCE. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal was studied. It was demonstrated that the kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately two- and threefold, respectively, as compared with buffer, resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Excited fluorophores outside the 200-nm layer do not contribute to SPCE, and their free space emission is not transmitted through the opaque metallic film into the glass substrate. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood with no need for washing steps.
    [Abstract] [Full Text] [Related] [New Search]