These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gametophyte interaction and sexual reproduction: how plants make a zygote. Author: Boavida LC, Vieira AM, Becker JD, Feijó JA. Journal: Int J Dev Biol; 2005; 49(5-6):615-32. PubMed ID: 16096969. Abstract: The evolutionary success of higher plants relies on a very short gametophytic phase, which underlies the sexual reproduction cycle. Sexual plant reproduction takes place in special organs of the flower: pollen, the male gametophyte, is released from the anthers and then adheres, grows and interacts along various tissues of the female organs, collectively known as the pistil. Finally, it fertilizes the female gametophyte, the embryo sac. Pollen is released as bi or tricellular, highly de-hydrated and presumably containing all the biochemical components and transcripts to germinate. Upon hydration on the female tissues, it develops a cytoplasmic extension, the pollen tube, which is one of the fastest growing cells in nature. Pollen is completely "ready-to-go", but despite this seemingly simple reaction, very complex interactions take place with the female tissues. In higher animals, genetic mechanisms for sex determination establish striking developmental differences between males and females. In contrast, most higher plant species develop both male and female structures within the same flower, allowing self-fertilization. Outcrossing is ensured by self-incompatibility mechanisms, which evolved under precise genetic control, controlling self-recognition and cell-to-cell interaction. Equally important is pollen selection along the female tissues, where interactions between different cell types with inherent signalling properties correspond to check-points to ensure fertilization. Last but not least, pollen-pistil interaction occurs in a way that enables the correct targeting of the pollen tubes to the receptive ovules. In this review, we cover the basic mechanisms underlying sexual plant reproduction, from the structural and cellular determinants, to the most recent genetic advances.[Abstract] [Full Text] [Related] [New Search]