These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Author: Ramarao N, Lereclus D. Journal: Cell Microbiol; 2005 Sep; 7(9):1357-64. PubMed ID: 16098222. Abstract: Bacteria of the Bacillus cereus group are resistant to the immune systems of various hosts and establish potent infections, implying that bacteria circumvent the bactericidal activity of host phagocytic cells. We investigated the fate of Bacillus spores after their internalization by macrophages. We found that these spores survive and escape from macrophages, and that the bacterial metalloprotease InhA1, the major component of the exosporium, is essential for efficient spore release from macrophages. InhA1 from Bacillus thuringiensis also enables Bacillus subtilis to escape from macrophages. Analysis of membrane permeability showed that the bacteria cause alterations in the macrophage membranes and that InhA1 is involved in these processes. Thus, InhA1 contributes to protect the bacteria against the host immune system. These findings provide further insight into the pathogenicity of B. cereus group members.[Abstract] [Full Text] [Related] [New Search]