These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-methyl-N-nitrosourea-induced apoptosis of photoreceptor cells in Sprague-Dawley rats via nuclear factor-kappaB.
    Author: Yang JN, Luo L, Lin SC, Chen JM, Li D, Hu SX.
    Journal: Chin Med J (Engl); 2005 Jul 05; 118(13):1081-6. PubMed ID: 16098260.
    Abstract:
    BACKGROUND: Previous studies have showed that photooxidative stress can lead to down-modulation of nuclear factor-kappa B (NF-kappaB) activity causing apoptosis of cultured photoreceptor cells. This study aimed at investigating whether NF-kappaB was involved in photoreceptor cells apoptosis induced by N-methyl-N-nitrosourea (MNU) in rats. METHODS: A single intraperitoneal injection of 60 mg/kg MNU was given to 50-day-old female rats. At different intervals after MNU treatment, the animals were sacrificed. Retinal damage was examined by a light microscope. The apoptotic index of the photoreceptor cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL). NF-kappaB was analysed by Western blot and Transcriptin Factor Assay Kits. RESULTS: The pyknosis of the photoreceptor nuclei and the disorientation of the outer segment of the photoreceptor layer was seen after MNU treatment for 24 hours. The outer nuclear layer and photoreceptor layer were almost completely lost at 7 days. Photoreceptor cells apoptosis reached the peaked value at 24 hours. In apoptotic cascade, the protein levels of NF-kappaB p65 were only detected after MNU treatment for 12 and 24 hours in the nucleus. Conversely, the amounts of IkappaBalpha were markedly increased in the cytoplasm as well as in the nucleus. The activity of NF-kappaB p65 in the nucleus was down-modulated in the end. CONCLUSIONS: MNU-induced photoreceptor cell destruction was attributed to the apoptotic process by down-regulating the activation of NF-kappaB p65.
    [Abstract] [Full Text] [Related] [New Search]