These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bovine toll-like receptor 9: a comparative analysis of molecular structure, function and expression. Author: Griebel PJ, Brownlie R, Manuja A, Nichani A, Mookherjee N, Popowych Y, Mutwiri G, Hecker R, Babiuk LA. Journal: Vet Immunol Immunopathol; 2005 Oct 18; 108(1-2):11-6. PubMed ID: 16098606. Abstract: Non-methylated CpG motifs, present in viral and bacterial DNA, are one of many pathogen-associated molecular patterns (PAMP) recognized by the mammalian innate immune system. Recognition of this PAMP occurs through a specific interaction with toll-like receptor 9 (TLR9) and this interaction can induce cytokine responses that influence both innate and adaptive immune responses. Previous investigations determined that both the flanking sequences in synthetic CpG oligodeoxynucleotides (CpG ODN) and the cellular pattern of TLR9 expression can influence species-specific responses to CpG ODN. Therefore, the structure, function and cellular distribution of bovine TLR9 were compared with what is known for mice and human. Analysis of the bovine TLR9 gene revealed greater sequence homology between cattle and humans than cattle and mice Similar CpG motifs induced optimal activation of both human and bovine leukocytes and these motifs were distinct from those which activated mouse leukocytes. Functional analyses with CpG ODN stimulated bovine blood leukocytes revealed that class A CpG ODN were more potent inducers of interferon-alpha (IFN-alpha) than class B CpG ODN. Furthermore, magnetic activated cell sorting of bovine blood leukocyte subpopulations implicated dendritic cells but not monocytes in the regulation of CpG ODN-induced IFN secretion. Thus, the cellular pattern of CpG ODN-induced responses in cattle shared many similarities with human leukocytes. Collectively, these analyses revealed substantial conservation of TLR9 structure and TLR9 function in blood leukocytes of humans, cattle and other domestic species.[Abstract] [Full Text] [Related] [New Search]