These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of cyclodextrin solubilization of drugs.
    Author: Loftsson T, Hreinsdóttir D, Másson M.
    Journal: Int J Pharm; 2005 Sep 30; 302(1-2):18-28. PubMed ID: 16099118.
    Abstract:
    The most common stoichiometry of drug/cyclodextrin complexes is 1:1, i.e. one drug molecule forms a complex with one cyclodextrin molecule, and the most common method for stoichiometric determination during formulation studies is the phase-solubility method. However, in recent years it has becoming increasingly clear that solubilizing effects of cyclodextrins are frequently due to the formation of multiple inclusion and non-inclusion complexes. The aqueous solubility of 38 different drugs was determined in pure aqueous solution, aqueous buffer solutions and aqueous cyclodextrin solutions, and the apparent stability constant (K1:1) of the 1:1 drug/cyclodextrin complexes calculated by the phase-solubility method. For poorly soluble drugs (aqueous solubility <0.1mM) the intrinsic solubility (S0) is in general much larger than the intercept of the phase-solubility diagram (Sint) resulting in non-linearity of otherwise linear (AL-type) phase-solubility diagram. This can lead to erroneous K(1:1)-values. A more accurate method for determination of the solubilizing efficiency of cyclodextrins is to determine their complexation efficiency (CE), i.e. the concentration ratio between cyclodextrin in a complex and free cyclodextrin. CE is calculated from the slope of the phase-solubility diagrams, it is independent of both S0 and Sint, and more reliable when the influences of different pharmaceutical excipients on the solubilization are being investigated.
    [Abstract] [Full Text] [Related] [New Search]