These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular aspects of rapid, reversible, Ca2+-dependent de-phosphorylation of pp63/parafusin during stimulated exo-endocytosis in Paramecium cells. Author: Plattner H, Kissmehl R. Journal: Cell Calcium; 2005; 38(3-4):319-27. PubMed ID: 16102820. Abstract: Ca2+ signalling governs stimulated exocytosis and exocytosis-coupled endocytosis also in Paramecium cells. Upon stimulation, the < or =10(3) dense-core exocytotic organelles (trichocysts) can be synchronously (80 ms) released, followed by endocytotic membrane resealing (350 ms) and retrieval. Paramecium is the most synchronous dense-core exocytotic system known, allowing to dissect rapidly reversible Ca2+-dependent phenomena. This holds for the reversible de-/re-phosphorylation cycle of a 63 kD phosphoprotein, pp63/parafusin (pf), which we have cloned, immuno-localised, and characterised as phosphoglucomutase, the enzyme funneling glucose into the glycolytic pathway. It was isolated ex vivo, followed by MALDI analysis, while X-ray structure analysis was performed after heterologous expression. We found multiple phosphorylation of superficial Ser/Thr residues. Although present also in exo(-) mutants, pp63/pf is selectively de-phosphorylated only in exo(+) strains during synchronous exocytosis (80 ms) and re-phosphorylated within approximately 20 s, i.e., the time required to re-establish [Ca2+] homeostasis. We have isolated relevant protein phosphatases and kinases and probed their activity on pp63/pf in vitro. We consider Ca2+/calmodulin-activated PP2B (calcineurin, whose subunits have been cloned) relevant for de-phosphorylation. Re-phosphorylation can be achieved by two protein kinases that also have been cloned. One is activated by cGMP (PKG) which in turn is formed by Ca2+-activated guanylate cyclase. Another kinase, casein kinase 2, is inhibited by Ca2+ and, hence, activated with some delay in parallel to decreasing [Ca2+] after exocytosis. In total, several Ca2+-sensitive cycles cooperate whose protein components have been localised to the cell cortex. Regulation of the phosphorylation degree of pp63/pf may affect structure binding on a microscale and/or its enzymatic activity. All this may serve fueling substrate into glycolysis with increased ATP re-formation (compromised in exo(-) mutants) and NADH formation, with effects on Ca2+ signalling including mobilisation from cortical stores (alveolar sacs) and overall effects on ATP and Ca2+ dynamics during synchronous exo- and endocytosis.[Abstract] [Full Text] [Related] [New Search]