These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor. Author: Pereira R, Cerione RA. Journal: J Biol Chem; 2005 Oct 21; 280(42):35696-703. PubMed ID: 16103122. Abstract: The rhodopsin/transducin-coupled vertebrate vision system has served as a paradigm for G protein-coupled signaling. We have taken advantage of this system to identify new types of constitutively active, transducin-alpha (alphaT) subunits. Here we have described a novel dominant-negative mutation, made in the background of a chimera consisting of alphaT and the alpha subunit of G(i1) (designated alphaT*), which involves the substitution of a conserved arginine residue in the conformationally sensitive Switch 3 region. Changing Arg-238 to either lysine or alanine had little or no effect on the ability of alphaT* to undergo rhodopsin-stimulated GDP-GTP exchange, whereas substituting glutamic acid for arginine at this position yielded an alphaT* subunit (alphaT*(R238E)) that was incapable of undergoing rhodopsin-dependent nucleotide exchange and was unable to bind or stimulate the target/effector enzyme (cyclic GMP phosphodiesterase). Moreover, unlike the GDP-bound forms of alphaT*, alphaT*(R238A) and alphaT*(R238K), the alphaT*(R238E) mutant did not respond to aluminum fluoride (AlF4(-)), as read out by changes in Trp-207 fluorescence. However, surprisingly, we found that alphaT*(R238E) effectively blocked rhodopsin-catalyzed GDP-GTP exchange on alphaT*, as well as rhodopsin-stimulated phosphodiesterase activity. Analysis by high pressure liquid chromatography indicated that the alphaT*(R238E) mutant exists in a nucleotide-free state. Nucleotide-free forms of G alpha subunits were typically very sensitive to proteolytic degradation, but alphaT*(R238E) exhibited a resistance to trypsin-proteolysis similar to that observed with activated forms of alphaT*. Overall, these findings indicated that by mutating a single residue in Switch 3, it is possible to generate a unique type of dominant-negative G alpha subunit that can effectively block signaling by G protein-coupled receptors.[Abstract] [Full Text] [Related] [New Search]