These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GC-MS quantitation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in blood. Author: Meatherall R. Journal: J Anal Toxicol; 2005; 29(5):301-8. PubMed ID: 16105253. Abstract: A method is described for the simultaneous analysis of seven opiates, codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone, in blood samples by gas chromatography-mass spectrometry (GC-MS). One milliliter of blood is combined with an internal standard mixture containing 200 ng of each of the seven deuterated opiates. Two milliliters of acetonitrile is added to precipitate the proteins and cellular material. After centrifugation, the clear supernatant is removed, and the acetonitrile is evaporated. The remaining aqueous portion is adjusted to pH 9 with sodium bicarbonate buffer, and the drugs are extracted into chloroform/ trifluoroethanol (10:1). The organic extractant is transferred and dried under nitrogen. The residue is reconstituted in dilute hydrochloric acid and washed consecutively with hexane and chloroform. The purified aqueous portion is adjusted to pH 9 with bicarbonate buffer, and the drugs are again extracted into chloroform/trifluoroethanol (10:1). The organic portion is removed from the aqueous fraction and dried under nitrogen. The residue is consecutively derivatized with methoxyamine and propionic anhydride using pyridine as a catalyst. The ketone groups on hydrocodone, hydromorphone, oxycodone, and oxymorphone are converted to methoximes. Hydroxyl groups present at the O(3) and O(6) positions of codeine, morphine, 6-acetylmorphine, hydromorphone, and oxymorphone are converted to their respective propionyl esters. After a post-derivatization purification step, the extracts are analyzed by full scan GC-MS using electron impact ionization. The method is linear to at least 2000 ng/mL. Day-to-day precision (N = 15) at 500 ng/mL and 75 ng/mL were less than 10% for all seven targeted opiates. Extraction efficiencies at these two concentrations ranged from 50% to 68%. For each opiate, the limit of quantitation was 10 ng/mL, and the limit of detection was 2 ng/mL.[Abstract] [Full Text] [Related] [New Search]