These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.
    Author: Pariser H, Perez-Pinera P, Ezquerra L, Herradon G, Deuel TF.
    Journal: Biochem Biophys Res Commun; 2005 Sep 16; 335(1):232-9. PubMed ID: 16105548.
    Abstract:
    Pleiotrophin (PTN the protein, Ptn the gene) signals through a unique mechanism; it inactivates the tyrosine phosphatase activity of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, and increases tyrosine phosphorylation of the substrates of RPTPbeta/zeta through the continued activity of a yet to be described protein tyrosine kinase(s) in PTN-stimulated cells. We have now found that the cytoskeletal protein beta-adducin interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system, that beta-adducin is a substrate of RPTPbeta/zeta, that beta-adducin is phosphorylated in tyrosine in cells not stimulated by PTN, and that tyrosine phosphorylation of beta-adducin is sharply increased in PTN-stimulated cells, suggesting that beta-adducin is a downstream target of and regulated by the PTN/RPTPbeta/zeta signaling pathway. beta-Catenin was the first downstream target of the PTN/RPTPbeta/zeta signaling pathway to be identified; these data thus also suggest that PTN coordinately regulates steady state levels of tyrosine phosphorylation of the important cytoskeletal proteins beta-adducin and beta-catenin and, through PTN-stimulated tyrosine phosphorylation, beta-adducin may contribute to the disruption of cytoskeletal structure, increased plasticity, and loss of homophilic cell-cell adhesion that are the consequences of PTN stimulation of cells and a characteristic feature of different malignant cells with mutations that activate constitutive expression of the endogenous Ptn gene.
    [Abstract] [Full Text] [Related] [New Search]