These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs).
    Author: Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ.
    Journal: Blood; 2005 Dec 01; 106(12):3917-25. PubMed ID: 16105982.
    Abstract:
    Tumor necrosis factor (TNF)-alpha, a potent stimulus of nuclear factor-kappaB (NF-kappaB), is up-regulated in myelodysplastic syndrome (MDS). Here, we show that bone marrow mononuclear cells (BMMCs) and purified CD34+ cells from patients with low-grade/early-stage MDS (refractory anemia/refractory anemia with ring sideroblasts [RA/RARS]) have low levels of NF-kappaB activity in nuclear extracts comparable with normal marrow, while patients with RA with excess blasts (RAEB) show significantly increased levels of activity (P = .008). Exogenous TNF-alpha enhanced NF-kappaB nuclear translocation in MDS BMMCs above baseline levels. Treatment with arsenic trioxide (ATO; 2-200 microM) inhibited NF-kappaB activity in normal marrow, primary MDS, and ML1 cells, even in the presence of exogenous TNF-alpha (20 ng/mL), and down-regulated NF-kappaB-dependent antiapoptotic proteins, B-cell leukemia XL (Bcl-XL), Bcl-2, X-linked inhibitor of apoptosis (XIAP), and Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE) inhibitory protein (FLIP), leading to apoptosis. However, overexpression of FLIP resulted in increased NF-kappaB activity and rendered ML1 cells resistant to ATO-induced apoptosis. These data are consistent with the observed up-regulation of FLIP and resistance to apoptosis with advanced MDS, where ATO as a single agent may show only limited efficacy. However, the data also suggest that combinations of ATO with agents that interfere with other pathways, such as FLIP autoamplification via NF-kappaB, may have considerable therapeutic activity.
    [Abstract] [Full Text] [Related] [New Search]