These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: General and targeted statistical potentials for protein-ligand interactions.
    Author: Mooij WT, Verdonk ML.
    Journal: Proteins; 2005 Nov 01; 61(2):272-87. PubMed ID: 16106379.
    Abstract:
    We present a novel atom-atom potential derived from a database of protein-ligand complexes. First, we clarify the similarities and differences between two statistical potentials described in the literature, PMF and Drugscore. We highlight shortcomings caused by an important factor unaccounted for in their reference states, and describe a new potential, which we name the Astex Statistical Potential (ASP). ASP's reference state considers the difference in exposure of protein atom types towards ligand binding sites. We show that this new potential predicts binding affinities with an accuracy similar to that of Goldscore and Chemscore. We investigate the influence of the choice of reference state by constructing two additional statistical potentials that differ from ASP only in this respect. The reference states in these two potentials are defined along the lines of Drugscore and PMF. In docking experiments, the potential using the new reference state proposed for ASP gives better success rates than when these literature reference states were used; a success rate similar to the established scoring functions Goldscore and Chemscore is achieved with ASP. This is the case both for a large, general validation set of protein-ligand structures and for small test sets of actives against four pharmaceutically relevant targets. Virtual screening experiments for these targets show less discrimination between the different reference states in terms of enrichment. In addition, we describe how statistical potentials can be used in the construction of targeted scoring functions. Examples are given for cdk2, using four different targeted scoring functions, biased towards increasingly large target-specific databases. Using these targeted scoring functions, docking success rates as well as enrichments are significantly better than for the general ASP scoring function. Results improve with the number of structures used in the construction of the target scoring functions, thus illustrating that these targeted ASP potentials can be continuously improved as new structural data become available.
    [Abstract] [Full Text] [Related] [New Search]