These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions.
    Author: Mozdzan M, Szemraj J, Rysz J, Stolarek RA, Nowak D.
    Journal: Int J Biochem Cell Biol; 2006 Jan; 38(1):69-81. PubMed ID: 16107320.
    Abstract:
    This study was designed to investigate the direction of redox reactions of spermine and spermidine in the presence of iron and copper. The redox activity of spermine and spermidine was assessed using a variety of methods, including their ability to: (1) reduce Fe(3+) to Fe(2+) ions; (2) protect deoxyribose from oxidation by Fe(2+)-ethylene diaminetetraacetic acid, Fe(3+)-ethylene diaminetetraacetic acid systems with and without H(2)O(2); (3) protect DNA from damage caused by Cu(2+)-H(2)O(2), and Fe(2+)-H(2)O(2) with and without ascorbic acid; (4) inhibit H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence; (5) scavenge diphenyl-picryl-hydrazyl radical. Spermine and spermidine at concentration 1mM reduced 1.8+/-0.3 and 2.5+/-0.1 nmol of Fe(3+) ions during 20 min incubation. Both polyamines enhanced deoxyribose oxidation. The highest enhancement of 7.6-fold in deoxyribose degradation was found for combination of spermine with Fe(3+)-ethylene diaminetetraacetic acid. An 10mM spermine and spermidine decreased CuSO(4)-H(2)O(2)-ascorbic acid- and FeSO(4)-H(2)O(2)-ascorbic-induced DNA damage by 73+/-6, 69+/-4% and 90+/-5, 53+/-4%, respectively. They did not protect DNA from CuSO(4)-H(2)O(2) and FeSO(4)-H(2)O(2). Spermine apparently increased the CuSO(4)-H(2)O(2)-dependent injury to DNA. Polyamines attenuated H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence. Total light emission from specimens containing 10mM spermine or spermidine was attenuated by 85.3+/-1.5 and 87+/-3.6%. During 20 min incubation 1mM spermine or spermidine decomposed 8.1+/-1.4 and 9.2+/-1.8% of diphenyl-picryl-hydrazyl radical. These results demonstrate that polyamines of well known anti-oxidant properties may act as pro-oxidants and enhance oxidative damage to DNA components in the presence of free iron ions and H(2)O(2).
    [Abstract] [Full Text] [Related] [New Search]