These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Author: Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. Journal: Proc Natl Acad Sci U S A; 2005 Aug 30; 102(35):12612-7. PubMed ID: 16107538. Abstract: Phytate (inositol hexakisphosphate, IP6) is a regulator of intracellular signaling, a highly abundant animal antinutrient, and a phosphate store in plant seeds. Here, we report a requirement for inositol polyphosphate kinases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption of these kinases nearly ablates seed phytate without accumulation of phytate precursors, increases seed-free phosphate by 10-fold, and has normal seed yield. Additionally, we find a requirement for inositol tetrakisphosphate (IP4)/inositol pentakisphosphate (IP5) 2-kinase activity in phosphate sensing and root hair elongation. Our results define a commercially viable strategy for the genetic engineering of phytate-free grain and provide insights into the role of inositol polyphosphate kinases in phosphate signaling biology.[Abstract] [Full Text] [Related] [New Search]