These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Alterations in ATP-dependence of swelling-activated Cl- current associated with neuroendocrine differentiation of LNCaP human prostate cancer epithelial cells]. Author: Lazarenko RM, Kondrats'kyĭ AP, Pohoriela NKh, Shuba IaM. Journal: Fiziol Zh (1994); 2005; 51(3):57-66. PubMed ID: 16108226. Abstract: Increasing population of malignant, apoptosis resistant neuroendocrine (NE) cells due to differentiation of prostate epithelial/basal cells is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. Acquisition of apoptosis resistance involves alterations in the mechanisms of cell volume homeostasis, of which volume-regulate anion channels (VRAC) that carry swelling-activated Cl- current (I(Cl,swell)) represent one of the key determinants. Given that VRAC function is generally known to be ATP-dependent, here we investigated how such dependence may evolve during NE differentiation of LNCaP prostate cancer epithelial cells. In the whole-cell patch-clamp recording mode I(Cl,swell) could be activated in response to hypotonicity-induced cell swelling in control and NE-differentiated (by incubation in membrane-permeable cAMP analogs) LNCaP cells even following total depletion of intracellular ATP using a cocktail of metabolic inhibitors. However, this basal I(Cl,swell) had about 30% higher density and was less inactivating in NE-differentiated cells. Inclusion of 5 mM Mg-ATP in the patch pipette caused I(Cl,swell) augmentation in both cell types. The augmentation in the control cells was more prominent and occurred mostly at the expense of a non-inactivating current component. We conclude that I(Cl,swell) in LNCaP cells consists of a non-inactivating, ATP-dependent and inactivating, ATP-independent components. NE differentiation promotes the increase of non-inactivating component and partial loss of its ATP sensitivity making the whole I(Cl,swell) less ATP-sensitive as well. By largely avoiding the ATP metabolic control I(Cl,swell) may contribute to better control of cell volume under metabolic stress and thus enhance the survival rates of apoptosis-resistant NE cells.[Abstract] [Full Text] [Related] [New Search]