These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Author: Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Hara M, Gaisano HY. Journal: Endocrinology; 2005 Nov; 146(11):4766-75. PubMed ID: 16109783. Abstract: We recently reported a transgenic [mouse insulin promoter (MIP)-green fluorescent protein (GFP)] mouse in which GFP expression is targeted to the pancreatic islet beta-cells to enable convenient identification of beta-cells as green cells. The GFP-expressing beta-cells of the MIP-GFP mouse were functionally indistinguishable from beta-cells of normal mice. Here we characterized the ionic channel properties and exocytosis of MIP-GFP mouse islet beta- and alpha-cells. Beta-cells displayed delayed rectifying K+ and high-voltage-activated Ca2+ channels and exhibited Na+ currents only at hyperpolarized holding potential. Alpha-cells were nongreen and had both A-type and delayed rectifier K+ channels, both low-voltage-activated and high-voltage-activated Ca2+ channels, and displayed Na+ currents readily at -70 mV holding potential. Alpha-cells had ATP-sensitive K+ channel (KATP) channel density as high as that in beta-cells, and, surprisingly, alpha-cell KATP channels were more sensitive to ATP inhibition (IC50=0.16+/-0.03 mM) than beta-cell KATP channels (IC50=0.86+/-0.10 mM). Whereas alpha-cells were rather uniform in size [2-4.5 picofarad (pF)], beta-cells varied vastly in size (2-12 pF). Of note, small beta-cells (<4.5 pF) showed little exocytosis, whereas medium beta-cells (5-8 pF) exhibited vigorous exocytosis, but large beta-cells (>8 pF) had weaker exocytosis. We found no correlation between beta-cell size and their Ca2+ channel density, suggesting that Ca2+ influx may not be the cause of the heterogeneity in exocytotic responses. The MIP-GFP mouse therefore offers potential to further explore the functional heterogeneity in beta-cells of different sizes. The MIP-GFP mouse islet is therefore a reliable model to efficiently examine alpha-cell and beta-cell physiology and should greatly facilitate examination of their pathophysiology when the MIP-GFP mice are crossed with diabetic models.[Abstract] [Full Text] [Related] [New Search]