These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hind limb proportions and kinematics: are small primates different from other small mammals? Author: Schmidt M. Journal: J Exp Biol; 2005 Sep; 208(Pt 17):3367-83. PubMed ID: 16109897. Abstract: Similar in body size, locomotor behaviour and morphology to the last common ancestor of Primates, living small quadrupedal primates provide a convenient model for investigating the evolution of primate locomotion. In this study, the hind limb kinematics of quadrupedal walking in mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys are analysed using cineradiography. The scaling of hind limb length to body size and the intralimb proportions of the three-segmented hind limb are taken into consideration when kinematic similarities and differences are discussed. Hind limb kinematics of arboreal quadrupedal primates, ranging in size between 100 g and 3000 g, are size independent and resemble the hind limb kinematics of small non-cursorial mammals. A common feature seen in smaller mammals, in general, is the horizontal position of the thigh at touchdown and of the lower leg at lift-off. Thus, the maximum bone length is immediately transferred into the step length. The vertical position of the leg at the beginning of a step cycle and of the thigh at lift-off contributes the same distance to pivot height. Step length and pivot height increase proportionally with hind limb length, because intralimb proportions of the hind limb remain fairly constant. Therefore, the strong positive allometric scaling of the hind limb in arboreal quadrupedal primates affects neither the kinematics of hind limb segments nor the total angular excursion of the limb. The angular excursion of the hind limb in quadrupedal primates is equal to that of other non-cursorial mammals. Hence, hind limb excursion in larger cercopithecine primates differs from that of other large mammals due to the decreasing angular excursion as part of convergent cursorial adaptations in several phylogenetic lineages of mammals. Typical members of those phylogenetic groups are traditionally used in comparison with typical primates, and therefore the ;uniqueness' of primate locomotor characteristics is often overrated.[Abstract] [Full Text] [Related] [New Search]