These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water.
    Author: Wu FC, Tseng RL.
    Journal: J Colloid Interface Sci; 2006 Feb 01; 294(1):21-30. PubMed ID: 16111690.
    Abstract:
    Fir wood was first carbonized for 1.5 h at 450 degrees C, then soaked in a KOH solution KOH/char ratio of 1, and last activated for 1 h at 780 degrees C. During the last hour CO2 was poured in for further activation for 0, 15, 30, and 60 min, respectively. Carbonaceous adsorbents with controllable surface area and pore structure were chemically activated from carbonized fir wood (i.e., char) by KOH etching and CO2 gasification. The pore properties, including the BET surface area, pore volume, pore size distribution, and pore diameter, of these activated carbons were first characterized by the t-plot method based on N2 adsorption isotherms. Fir-wood carbon activated with CO2 gasification from 0 to 60 min exhibited a BET surface area ranging from 1371 to 2821 m2 g(-1), with a pore volume significantly increased from 0.81 to 1.73 m2 g(-1). Scanning electron microscopic (SEM) results showed that the surfaces of honeycombed holes in these carbons were significantly different from those of carbons without CO2 gasification. The adsorption of methylene blue, basic brown 1, acid blue 74, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water on all the carbons studied was examined to check their chemical characteristics. Adsorption kinetics was in agreement with the Elovich equation, and all equilibrium isotherms were in agreement with the Langmuir equation. These results were used to compare the Elovich parameter (1/b) and the adsorption quantity of the unit area (q(mon)/Sp) of activated carbons with different CO2 gasification durations. This work facilitated the preparation of activated carbon by effectively controlling pore structures and the adsorption performance of the activated carbon on adsorbates of different molecular forms.
    [Abstract] [Full Text] [Related] [New Search]