These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overexpression of Bcl-xl protects septal neurons from prolonged hypoglycemia and from acute ischemia-like stress. Author: Panickar KS, Nonner D, Barrett JN. Journal: Neuroscience; 2005; 135(1):73-80. PubMed ID: 16111822. Abstract: Overexpression of Bcl-xl, a member of the Bcl-2 protein family, is reported to protect from a variety of stresses involving delayed cell death. We tested the ability of Bcl-xl overexpression to protect primary cultures of embryonic rat septal neurons subjected to one of four different stresses: 6 h of combined oxygen-glucose deprivation, which produces rapid cell death, or a 24 h exposure to hypoglycemia, hyperglycemia, or 1mM 3-nitropropionic acid (an inhibitor of mitochondrial respiration), which results in a more slowly-developing death. Prior to the stress neurons were transiently transfected to overexpress either green fluorescent protein only or green fluorescent protein along with wild-type Bcl-xl. Immediately after oxygen-glucose deprivation, many neurons expressing green fluorescent protein only showed process blebbing and disintegration, with only 49% of the initial cells remaining intact with processes. Neurons expressing both green fluorescent protein and Bcl-xl showed less damage (68% intact post-stress, P<0.05). This result indicates that Bcl-xl's saving effects are not due solely to blocking delayed (apoptotic) death, because death following oxygen-glucose deprivation was rapid and was not accompanied by increased activation of caspase-3. Bcl-xl expression also significantly protected against the hypoglycemic stress (23% intact 24 h post-stress with green fluorescent protein only, compared with 70% with Bcl-xl and green fluorescent protein), but did not protect from hyperglycemia or 3-nitropropionic acid. Thus Bcl-xl does not protect against all forms of delayed death. Bcl-xl's protective effects may include blocking early damaging events, perhaps by increasing mitochondrial function in the face of low levels of energy substrates. Bcl-xl's protective effects may require an intact electron transport chain.[Abstract] [Full Text] [Related] [New Search]