These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The linear alometric relationship between total metabolic energy per life span and body mass of poikilothermic animals. Author: Atanasov AT. Journal: Biosystems; 2005 Nov; 82(2):137-42. PubMed ID: 16112803. Abstract: A linear relationship exists between total metabolic energy per life span PT(ls) (kJ) and body mass M (kg) of 54 poikilothermic species (Protozoa, Nematoda, Mollusca, Asteroidae, Insecta, Arachnoidae, Crustacea, Pisces, Amphibia, Reptilia and Snakes): PT(ls) = A(ls*)M(1.0838), where P (kJ/day) is the rate of metabolism and T(ls) (days) is the life span of animals. The linear coefficient A(ls*) = 3.7 x 10(5) kJ/kg is the total metabolic energy, exhausted during the life span per 1 kg body mass of animals. This linear coefficient can be regarded as relatively constant metabolic parameter for poikilothermic organisms, ranging from 0.1 x 10(5) to 5.5 x 10(5) kJ/kg, in spite of 17-degree differences between metabolic rate and body mass of animals. A linear relationship between total metabolic energy per life span and body mass of only 48 poikilothermic multicellular animals (without Protozoa) is: PT(ls) = A(ls*)M(0.9692) with linear coefficient A(ls*) = 2.34 x 10(5) kJ/kg. Since a power relationship exists between the rate of metabolism and body mass of animals of the type: P = aMk (a and k are the alometric constants), an empiric rule could be formulated, that life span is a time interval for which the total metabolic energy per life span becomes proportional to body mass of animals and power coefficient k becomes approximately 1.0.[Abstract] [Full Text] [Related] [New Search]