These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recognizing names in biomedical texts using mutual information independence model and SVM plus sigmoid.
    Author: Zhou GD.
    Journal: Int J Med Inform; 2006 Jun; 75(6):456-67. PubMed ID: 16112894.
    Abstract:
    In this paper, we present a biomedical name recognition system, called PowerBioNE. In order to deal with the special phenomena in the biomedical domain, various evidential features are proposed and integrated through a mutual information independence model (MIIM). In addition, a support vector machine (SVM) plus sigmoid is proposed to resolve the data sparseness problem in the MIIM. In this way, the data sparseness problem in MIIM-based biomedical name recognition can be resolved effectively and a biomedical name recognition system with better performance and better portability can be achieved. Finally, we present two post-processing modules to deal with the nested entity name and abbreviation phenomena in the biomedical domain to further improve the performance. Evaluation shows that our system achieves F-measures of 69.1 and 71.2 on the 23 classes of GENIA V1.1 and V3.0, respectively. In particular, our system achieves an F-measure of 77.8 on the "protein" class of GENIA V3.0. It also shows that our system outperforms the best-reported system on GENIA V1.1 and V3.0.
    [Abstract] [Full Text] [Related] [New Search]