These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate.
    Author: Cayetanot F, Bentivoglio M, Aujard F.
    Journal: Eur J Neurosci; 2005 Aug; 22(4):902-10. PubMed ID: 16115213.
    Abstract:
    The suprachiasmatic nucleus (SCN) of the hypothalamus, the mammalian circadian pacemaker, is entrained by external cues and especially by photic information. Light is transmitted primarily via the retinohypothalamic tract, which terminates in the ventral part (or core) of the SCN, where vasoactive intestinal polypeptide (VIP)-containing neurons are located. VIP cells are mainly intrinsic and project to the dorsal part (or shell) of the SCN, where neurons containing arginine-vasopressin (AVP) reside. As aging leads to marked changes in the expression of circadian rhythms, we examined in primates whether age-related decay in biological rhythmicity is associated with changes in the oscillation of peptide expression in SCN neurons. We used double immunohistochemistry and quantitative analysis in the SCN of mouse lemurs, which provide a unique model of aging in non-human primates. In adult animals, VIP-positive and AVP-positive SCN neurons exhibited daily rhythms of their number and immunostaining intensity: AVP immunoreactivity peaked during the second part of the day, and VIP peaked during the night. In aged mouse lemurs, the peaks of AVP and VIP immunopositivity were significantly shifted, so that AVP was most intense at the beginning of the night, whereas VIP peaked at the beginning of daytime. The results show that the circadian rhythm of neuropeptides in the SCN is modified by aging in primates, with a differential regulation of the two main peptidergic cell populations. These changes may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby to modify the expression of some biological rhythms.
    [Abstract] [Full Text] [Related] [New Search]