These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Author: Aoki R, Wada M, Takesue N, Tanaka K, Yokota A.
    Journal: Biosci Biotechnol Biochem; 2005 Aug; 69(8):1466-72. PubMed ID: 16116273.
    Abstract:
    Previously we reported that a mutant of Corynebacterium glutamicum ATCC14067 with reduced H+-ATPase activity, F172-8, showed an approximately two times higher specific rate of glucose consumption than the parent, but no glutamic acid productivity under the standard biotin-limited culture conditions, where biotin concentration was set at 5.5 microg/l in the production medium (Sekine et al., Appl. Microbiol. Biotechnol., 57, 534-540 (2001)). In this study, various culture conditions were tested to check the glutamic acid productivity of strain F172-8. The mutant was found to produce glutamic acid under exhaustive biotin limitation, where the biotin concentration of the medium was set at 2.5 microg/l with much smaller inoculum size. When strain F172-8 was cultured under the same biotin-limited conditions using a jar fermentor, 53.7 g/l of glutamic acid was produced from 100 g/l glucose, while the parent produced 34.9 g/l of glutamic acid in a medium with 5.5 microg/l biotin. The glutamic acid yield of strain F172-8 also increased under Tween 40-triggered production conditions (1.2-fold higher than the parent strain). The amounts of biotin-binding enzymes were investigated by Western blot analysis. As compared to the parent, the amount of pyruvate carboxylase was lower in the mutant; however, the amount of acetyl-CoA carboxylase did not significantly change under the glutamic acid production conditions. To the best of our knowledge, this is the first report showing that the H+-ATPase-defective mutant of C. glutamicum is useful in glutamic acid production.
    [Abstract] [Full Text] [Related] [New Search]