These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass. Author: Baraka A, El-Khatib M, Muallem E, Jamal S, Haroun-Bizri S, Aouad M. Journal: J Extra Corpor Technol; 2005 Jun; 37(2):192-5. PubMed ID: 16117458. Abstract: Continuous monitoring and control of arterial carbon dioxide tension (P(a)CO2) during cardiopulmonary bypass (CPB) is essential. A reliable, accurate, and inexpensive system is not currently available. This study was undertaken to assess whether the continuous monitoring of oxygenator exhaust carbon dioxide tension (PexCO2) can be used to reflect P(a)CO2 during CPB. A total of 33 patients undergoing CPB for cardiac surgery were included in the study. During normothermia (37 degrees C) and stable hypothermia (31 degrees C), the values of PexCO2 from the oxygenator exhaust outlet were monitored and compared simultaneously with the P(a)CO2 values. Regression and agreement analysis were performed between PexCO2 and temperature corrected-P(a)CO2 and temperature uncorrected-P(a)CO2. At normothermia, a significant correlation was obtained between PexCO2 and P(a)CO2 (r = 0.79; p < 0.05); there was also a strong agreement between PexCO2 and P(a)CO2 with a gradient of 3.4 +/- 1.9 mmHg. During stable hypothermia, a significant correlation was obtained between PexCO2 and the temperature corrected-P(a)CO2 (r = 0.78; p < 0.05); also, there was a strong agreement between PexCO2 and temperature corrected-P(a)CO2 with a gradient of 2.8 +/- 2.0 mmHg. During stable hypothermia, a significant correlation was obtained between PexCO2 and the temperature uncorrected-P(a)CO2 (r = 0.61; p < 0.05); however, there was a poor agreement between PexCO2 and the temperature uncorrected-P(a)CO2 with a gradient of 13.2 +/- 3.8 mmHg. Oxygenator exhaust capnography could be used as a mean for continuously monitoring P(a)CO2 during normothermic phase of cardiopulmonary bypass as well as the temperature-corrected P(a)CO2 during the stable hypothermic phase of CPB.[Abstract] [Full Text] [Related] [New Search]