These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition.
    Author: Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam VH, Hu M.
    Journal: Drug Metab Dispos; 2005 Dec; 33(12):1777-84. PubMed ID: 16120792.
    Abstract:
    The purpose of this study was to compare intestinal versus hepatic disposition of six flavonoids to fully characterize their first-pass metabolism. The perfused rat intestinal model and microsomes prepared from rat liver, duodenum, jejunum, ileum, and colon were used. The results indicated that isoflavone (12.5 microM) glucuronidation was highly variable among different microsomes prepared from liver or intestine. Comparing to liver metabolism, the intestinal metabolism had higher K(m) values (>2-fold). Likewise, the hepatic intrinsic clearance (IC, or a ratio of V(max)/K(m)) values of isoflavones were generally higher than their intestinal IC values (200-2000% higher), except for prunetin, for which the jejunal IC value was 50% higher than its hepatic IC. When comparing intestinal metabolism, the results showed that intestinal metabolism rates and V(max) values of isoflavones were less when an additional A-ring electron-donating group was absent (i.e., daidzein and formononetin). In the rat perfusion model using the whole small intestine, genistein (10 microM) was well absorbed (77% or 352 nmol/120 min). The first-pass metabolism of genistein was extensive, with 40% of absorbed genistein excreted as conjugated metabolites into the intestinal lumen. In contrast, the bile excretion of genistein conjugates was much less (6.4% of absorbed genistein). In conclusion, intestinal glucuronidation is slower in isoflavones without an additional A-ring substitution. Perfusion studies suggest that intestine is the main organ for genistein glucuronide formation and excretion in rats and may serve as its main first-pass metabolism organ.
    [Abstract] [Full Text] [Related] [New Search]