These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amino acid analogues: uptake, pool formation and incorporation of phenylalanine and two halogenated derivatives in cultured mammalian cells.
    Author: Wheatley DN, Robertson JH, Giddings MR.
    Journal: Cytobios; 1979; 24(94):75-98. PubMed ID: 161221.
    Abstract:
    HeLa cells take up Phe and two of its ring halogenated derivatives (pFPhe and pClPhe) with rpaidity, concentrating them against the external medium both at 4 and 37 degrees C. The majority of amino acid (greater than 90%) is accumulated without energy expenditures at 4 degrees C, and can be quickly discharged by normal cell washing procedures in saline. At 37 degrees C the freely-diffusible (FDP) pool is accompanied by another which develops more slowly and cannot diffuse out freely during washings with saline but is extractable with trichloracetic acid (the slowly-diffusible pool, SDP, or more conventionally, the acid-soluble pool). Both of the analogues produced larger pools of the latter type than Phe itself from external concentrations ranging from 10(-5) to 10(-3) M. The incorporation of pFPhe into proteins over these same concentrations ranged from 30 to 90--95% of Phe incorporation, whereas pClPhe showed negligible incorporation. From these and similar analyses it can be concluded that amino acid pools form largely independently of protein synthesis, but bear a close relationship with the external amino acid concentration. The fraction of total uptake into cellular pools entering the SDP was relatively constant over a wide range of external concentrations. pFPhe incorporation into cellular proteins produced the same labelling distribution of Phe. It appears to ener all proteins, the vast majority of which have similar half-lives and turnover rates to Phe proteins. In competition, little or no interference was experienced between the analogue and Phe in uptake and pool formation until excessive amounts of one or the other were present (50--100x). By contrast, incorporation of pFPhe into protein was markedly reduced by the presence of Phe. However, the development of normal or large pools of pFPhe or Phe in cells prior to 3H-Phe incorporation did not affect the linear incorporation pattern of the radioisotope into protein. The relationship of pools to protein synthesis is discussed, and it is concluded that, although the SDP could contain potential precursor molecules for protein synthesis, it does not usually act as the direct supplier of amino acid for protein synthesis. Alternative explanations for precursor supply are discussed.
    [Abstract] [Full Text] [Related] [New Search]