These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats.
    Author: Schreihofer AM, Ito S, Sved AF.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2005 Dec; 289(6):R1746-55. PubMed ID: 16123230.
    Abstract:
    Interruption of the baroreceptor reflex by transection of afferent nerves (sinoaortic denervation; SAD) or lesions of nucleus tractus solitarius (NTS) elevates sympathetic nerve activity (SNA) and arterial pressure (AP). However, within 1 wk, mean AP returns to normal despite the absence of baroreflexes. In this study, we examine central mechanisms that control AP in chronic baroreceptor-denervated rats. In urethane-anesthetized rats (1.5 g/kg i.v.) after autonomic ganglionic blockade (5 mg/kg i.v. chlorisondamine), alpha1-adrenergic-mediated pressor responses (1-100 microg/kg i.v. phenylephrine) were not altered by chronic lesions of NTS, indicating vascular reactivity to sympathetic stimulation is normal. Transection of the spinal cord at T1 profoundly decreased AP and was not further reduced by chlorisondamine in control or denervated rats. Inhibition of the rostral ventrolateral medulla (RVLM) by microinjections of muscimol (100 pmol/side) decreased AP to levels not further reduced by chlorisondamine in control rats, rats with SAD, and rats with NTS lesions. Blockade of GABA(A) receptors in the RVLM (50 pmol/side bicuculline) increased AP similarly in control rats and denervated rats. In agreement, inhibition of the caudal ventrolateral medulla (CVLM) by microinjections of muscimol or blockade of glutamatergic inputs (2.7 nmol/side kynurenate) produced comparable increases in AP in control and denervated rats. These data suggest the RVLM continues to drive the SNA that regulates AP in the chronic absence of baroreceptor inputs. In addition, despite the absence of a tonic excitatory input from NTS, in chronic baroreceptor-denervated rats glutamatergic inputs drive the CVLM to tonically inhibit the RVLM. Baroreceptor-independent regulation of the ventrolateral medulla may underlie central mechanisms contributing to the long-term control of AP.
    [Abstract] [Full Text] [Related] [New Search]