These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of ceramic thickness and polymerization mode of a resin luting agent on early bond strength and durability with a lithium disilicate-based ceramic system.
    Author: Akgungor G, Akkayan B, Gaucher H.
    Journal: J Prosthet Dent; 2005 Sep; 94(3):234-41. PubMed ID: 16126076.
    Abstract:
    STATEMENT OF PROBLEM: Attenuation of polymerization light energy by translucent all-ceramic materials may result in insufficient polymerization of underlying resin luting agents and inadequate early bond strength and durability. There is little information regarding the selection of an appropriate polymerization mode for cementing translucent all-ceramic restorations. PURPOSE: The purpose of this study was to evaluate the influence of ceramic thickness and polymerization mode on the early bond strength and bond durability of a lithium disilicate-based ceramic system. MATERIAL AND METHODS: The occlusal surfaces of 120 extracted, intact, human third molars were sectioned to expose a flattened area of dentin. The surface was etched with 32% phosphoric acid, and a single-step adhesive (One-Step) was applied to the etched dentin surfaces. Ceramic specimens (Empress 2), 6 mm in diameter and 1 mm, 1.5 mm, or 2 mm thick (n=40 per group), were fabricated using fluoropolymer resin matrixes. Each specimen was ground flat. Following hydrofluoric acid etching and silane treatment, ceramic discs of each thickness were further divided into 2 groups (n=20 per group) and bonded to the dentin surfaces with a dual-polymerized resin luting agent (Illusion), either with a catalyst (dual polymerization) or without a catalyst (light polymerization). A shear bond test was performed after 10 minutes (n=10) or after 24 hours following 1000 thermal cycles between 5 degrees C and 55 degrees C and a dwell time of 30 seconds (n=10). Debonded dentin surfaces were examined with SEM. The data were analyzed with 3-way analysis of variance (ANOVA) (alpha=.05). RESULTS: The shear bond strengths ranged between 13.2 +/- 4.1 MPa and 15.9 +/- 2.0 MPa. Three-way ANOVA revealed that ceramic thickness, polymerization mode, storage time, or combinations of these parameters did not influence shear bond strength. The location of failure for all specimens was adhesive, between the dentin surface and bonding agent. CONCLUSION: Both light polymerization and dual polymerization provided similar early shear bond strengths for the lithium disilicate-based ceramic system (Empress 2). The bond strength was not dependent on the thickness of the ceramic material tested. Durability of the bond was similar for both of the polymerization modes.
    [Abstract] [Full Text] [Related] [New Search]