These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genomic organization of telomeric and subtelomeric sequences of Leishmania (Leishmania) amazonensis.
    Author: Conte FF, Cano MI.
    Journal: Int J Parasitol; 2005 Nov; 35(13):1435-43. PubMed ID: 16126212.
    Abstract:
    Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.
    [Abstract] [Full Text] [Related] [New Search]