These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation.
    Author: Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT.
    Journal: Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H434-40. PubMed ID: 16126810.
    Abstract:
    ATP-sensitive K+ channel opening in inner mitochondrial membranes protects hearts from ischemia-reperfusion (I/R) injury. Opening of the Big conductance Ca2+-sensitive K+ channel (BK(Ca)) is now also known to elicit cardiac preconditioning. We investigated the role of the pharmacological opening of the BK(Ca) channel on inducing mitochondrial preconditioning during I/R and the role of O2-derived free radicals in modulating protection by putative mitochondrial (m)BK(Ca) channel opening. Left ventricular (LV) pressure (LVP) was measured with a balloon and transducer in guinea pig hearts isolated and perfused at constant pressure. NADH, reactive oxygen species (ROS), principally superoxide (O2(-*)), and m[Ca2+] were measured spectrophotofluorometrically at the LV free wall using autofluorescence and fluorescent dyes dihydroethidium and indo 1, respectively. BK(Ca) channel opener 1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimid-axolone (NS; NS-1619) was given for 15 min, ending 25 min before 30 min of global I/R. Either Mn(III)tetrakis(4-benzoic acid)porphyrin (TB; MnTBAP), a synthetic dismutator of O2(-*), or an antagonist of the BK(Ca) channel paxilline (PX) was given alone or for 5 min before, during, and 5 min after NS. NS pretreatment resulted in a 2.5-fold increase in developed LVP and a 2.5-fold decrease in infarct size. This was accompanied by less O2(-*) generation, decreased m[Ca2+], and more normalized NADH during early ischemia and throughout reperfusion. Both TB and PX antagonized each preconditioning effect. This indicates that 1) NS induces a mitochondrial-preconditioned state, evident during early ischemia, presumably on mBK(Ca) channels; 2) NS effects are blocked by BK(Ca) antagonist PX; and 3) NS-induced preconditioning is dependent on the production of ROS. Thus NS may induce mitochondrial ROS release to initiate preconditioning.
    [Abstract] [Full Text] [Related] [New Search]