These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extracellular potassium and trasmitter release at the giant synapse of squid.
    Author: Erulkar SD, Weight FF.
    Journal: J Physiol; 1977 Apr; 266(2):209-18. PubMed ID: 16128.
    Abstract:
    1. The effects of changes in extracellular K concentration, [K]0, on synaptic transmission were studied at the squid giant synapse with intracellular recording from the presynaptic terminal and post-synaptic axon. 2. The amplitudes of both the presynaptic spike and the e.p.s.p. varied inversely with [K]0. On the average, a 10 mV change in spike height was accompanied by a 3-1 mV change in e.p.s.p. amplitude. 3. The amplitude of the presynaptic spike after-hyperpolarization (AH) varied inversely with [K]0. On the average, increasing [K]0 resulted in a 20% change in e.p.s.p. amplitude per mV change in presynaptic spike AH. 4. Repetitive antidromic stimulation of the post-synaptic giant axon resulted in an exponential decline in the post-synaptic spike AH, a depolarization of the presynaptic membrane potential and a reduction in the AHs of presynaptic spikes. This suggests that the K which accumulates in the extracellular spaces around the post-synaptic axon also affects the presynaptic terminal. 5. Repetitive antidromic stimulation of the post-synaptic axon resulted in a reduction in the amplitude of e.p.s.p.s. elicted by stimulation of the presynaptic axon. The reduction in e.p.s.p. amplitude relative to the change in presynaptic spike AH was quantitatively close to the change produced by increasing [K]0, suggesting that the reduction in e.p.s.p. amplitude is due to the accumulation of extracellular K at the presynaptic terminal. 6. Repetitive stimulation of the presynaptic axon reduced the amplitudes of the e.p.s.p. and the presynaptic spike AH. On the average, a 1 mV change in presynaptic spike AH was accompanied by a 204% change in e.p.s.p. amplitude, suggesting that K accumulation may only contribute to a small extent, under these conditions, to the depression of transmitter release.
    [Abstract] [Full Text] [Related] [New Search]