These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes.
    Author: Amireault P, Dubé F.
    Journal: Mol Pharmacol; 2005 Dec; 68(6):1678-87. PubMed ID: 16131615.
    Abstract:
    cAMP and intracellular Ca2+ are important second messengers involved in mammalian follicular growth and oocyte meiotic maturation. We investigated the capacity of the neurohormone serotonin (5-hydroxytryptamine, 5-HT) to regulate intracellular cAMP and Ca2+ in mouse oocytes and surrounding cumulus cells. On the basis of a reverse transcription-polymerase chain reaction study, 5-HT7 receptor mRNA is expressed in cumulus cells, oocytes, and embryos up to the four-cell stage, and 5-HT2A and 5-HT2B receptor mRNAs are expressed in cumulus cells only, whereas 5-HT2C, 5-HT4, and 5-HT6 receptors are expressed in neither oocytes nor cumulus cells. The addition of 5-HT (10 nM to 10 microM) to isolated metaphase II oocytes had no effect on their internal cAMP or Ca2+ levels, whereas it caused dose-dependent cAMP and Ca2+ increases in cumulus cells. This cAMP increase in cumulus cells could be mimicked by 5-HT agonists with the following order of potency: 5-HT > 8-hydroxy-2-(di-n-propylamino) tetralin = alpha-methyl-5-HT = 5-carboxamidotryptamine maleate > 2-[1-(4-piperonyl)piperazinyl]benzo-triazole, thereby supporting a preferential involvement of 5-HT7 receptors. As measured with cumulus cells preloaded with fura-2/acetoxymethyl ester (AM), the addition of 5-HT also caused dose-dependent Ca2+ increases, which were probably linked to detected 5-HT2A and 5-HT2B receptors. Adding the Ca2+ ionophore ionomycin to cumulus cells resulted in both Ca2+ and cAMP elevations, whereas preincubation of cells with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM abolished the 5-HT-induced Ca2+ increase and reduced the cAMP increase, indicating cross-talk between the 5-HT-sensitive Ca2+ and cAMP pathways. Our results show that 5-HT may be a local regulator in mouse cumulus-oocyte complexes through its actions on cAMP and Ca2+ signaling, as mediated by 5-HT2A, 5-HT2B, and 5-HT7 receptors.
    [Abstract] [Full Text] [Related] [New Search]