These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acetaldehyde-induced interleukin-1beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells.
    Author: Hsiang CY, Wu SL, Cheng SE, Ho TY.
    Journal: J Biomed Sci; 2005 Oct; 12(5):791-801. PubMed ID: 16132116.
    Abstract:
    Alcoholic liver disease (ALD) is one of the most common liver diseases in the world. Increased levels of proinflammatory cytokines, including interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), have been correlated with the patients affected by ALD. However, the direct effect of alcohol in the induction of IL-1beta and TNF-alpha has not been clarified. In this study, we demonstrated that acetaldehyde, the metabolic product of ethanol, was able to induce IL-1beta and TNF-alpha production in HepG2 cells. Nuclear factor-kappaB (NF-kappaB), the transcription factor involved in the regulation of cytokine production, was also activated by acetaldehyde through inhibitory kappaB-alpha (IkappaB-alpha) phosphorylation and degradation. However, the NF-kappaB inhibitors, such as aspirin, cyclosporin A and dexamethasone, inhibited both the acetaldehyde-induced NF-kappaB activity and the induced cytokine production. Therefore, these data suggested that acetaldehyde stimulated IL-1beta and TNF-alpha production via the regulation of NF-kappaB signaling pathway. By screening 297 controlled Chinese medicinal herbs supervised by Committee on Chinese Medicine and Pharmacy at Taiwan, we found that Coptis chinensis (Huang-Lien) and Phellodendron amurense (Huang-Po) were capable of inhibiting acetaldehyde-induced NF-kappaB activity. Berberine, the major ingredient of these herbs, abolished acetaldehyde-induced NF-kappaB activity and cytokine production in a dose-dependent manner. Moreover, its inhibitory ability was through the inhibition of induced IkappaB-alpha phosphorylation and degradation. In conclusion, we first linked the acetaldehyde-induced NF-kappaB activity to the induced proinflammatory cytokine production in HepG2 cells. Our findings also suggested the potential role of berberine in the treatment of ALD.
    [Abstract] [Full Text] [Related] [New Search]