These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of condensed tannins purified from legume forages: chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. Author: McAllister TA, Martinez T, Bae HD, Muir AD, Yanke LJ, Jones GA. Journal: J Chem Ecol; 2005 Sep; 31(9):2049-68. PubMed ID: 16132212. Abstract: To identify simple screening tools for selecting condensed tannin (CT)-containing forages as candidate sources for further study, CT were isolated from nine legumes, and their molecular weights (MW), chromophore production, capacity to precipitate bovine serum albumin (BSA) and Fraction 1 protein (Rubisco) isolated from alfalfa, and inhibition of filter paper digestion were compared. Sources were as follows: leaves of sericea lespedeza (Lespedeza cuneata Dum.-Cours.), crown vetch (Coronilla varia L.), and sainfoin (Onobrychis viciifolia Scop.); stems of hedysarum (Hedysarum alpinum L.); seeds of alfalfa (Medicago sativa L.); and whole plants of birdsfoot trefoil (Lotus corniculatus var. corniculatus L.) and three varieties of big trefoil (Lotus pedunculatus Cav.), viz., Lotus uliginosus Schkuhr, L. uliginosus var. glabriusculus, and L. uliginosus var. villosus. Molecular weights and sizes (degrees of polymerization) of the CT varied considerably within and among plant species. Average MW ranged from 3036 Da (crown vetch) to 7143 Da (lespedeza). All CT exhibited greater capacity (w/w basis) to bind alfalfa Rubisco than BSA. Relative astringencies (microg CT required to precipitate 1 mg protein) against BSA ranged from 262.5 for CT from lespedeza to 435.5 for CT from L. corniculatus, and against Rubisco, from 49.6 (sainfoin) to 108.2 (alfalfa seed). Including CT at 300 microg/ml in cultures of Fibrobacter succinogenes reduced digestion of cellulose filter paper by 19.8% (sainfoin) to 92.4% (crown vetch) and increased the specific activity of cell-associated endoglucanase. There were no correlations between inhibitory effects of CT on filter paper digestion and (1) chromophore formation during CT assay by butanol-HCl, vanillin-HCl, or H2SO4; (2) precipitation of BSA or alfalfa Rubisco; and (3) MW of CT. The most inhibitory CT for cellulose digestion included those with broad and with narrow MW distributions. Sainfoin was the most desirable source of CT, as it had the highest capacity to bind alfalfa protein and was least inhibitory to cellulose digestion by F. succinogenes. This study suggests that these properties are not easily defined via chemical means, and that biological assays using rumen bacteria may help identify those CT with properties of nutritional interest.[Abstract] [Full Text] [Related] [New Search]