These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester.
    Author: Oktem F, Ozguner F, Sulak O, Olgar S, Akturk O, Yilmaz HR, Altuntas I.
    Journal: Mol Cell Biochem; 2005 Sep; 277(1-2):109-15. PubMed ID: 16132721.
    Abstract:
    Lithium carbonate used in the long-term treatment of manic-depressive illness has been reported to lead to progressive renal impairment in rats and humans. Caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, protects tissues from reactive oxygene species mediated oxidative stress in ischemia-reperfusion and toxic injuries. The beneficial effect CAPE on lithium-induced nephrotoxicity has not been reported yet. The purpose of this study was to examine a possible renoprotective effect of CAPE against lithium-induced nephrotoxicity in a rat model. Twenty-two adult male rats were randomly divided into three experimental groups, as follows: control group, lithium-treated group (Li), and lithium plus CAPE-treated group (Li+CAPE). Li were treated intraperitoneally (i.p.) with 25 mg/kg Li2CO3 solution in 0.9% NaCl twice daily for 4 weeks. CAPE was co-administered i.p. with a dose of 10 microM/kg/day for 4 weeks. Serum Li, blood urea nitrogen and plasma creatinine, urinary N-acetyl-beta-D-glucosaminidase (NAG, a marker of renal tubular injury), and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of oxidative stress-induced renal impairment in Li-treated rats. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in renal tissue. Serum Li levels were found high in the Li and Li+CAPE groups. In Li-administrated rats, urinary NAG and renal MDA levels were increased according to control and Li+CAPE groups (p < 0.05). CAPE caused a significant reduction in the levels of these parameters. Likewise, renal SOD, CAT and GSH-Px activities were decreased in Li-administrated animals; CAPE caused a significant increase in the activities of these antioxidant enzymes. In conclusion, CAPE treatment has a protective effect against Li-induced renal tubular damage and oxidative stress in a rat model.
    [Abstract] [Full Text] [Related] [New Search]